slot deposit pulsa slot mahjong slot gacor slot gacor slot gacor resmi slot gacor 2025 slot gacor terpercaya slot gacor 2025 slot gacor hari ini slot gacor hari ini slot gacor hari ini
开源库 Taipy :将 AI 算法、数据转化为 Web 应用程序
17611538698
webmaster@21cto.com

开源库 Taipy :将 AI 算法、数据转化为 Web 应用程序

开源 0 1413 2024-03-07 11:49:59

图片

导读:Taipy 是一个新的免费框架,可让 Python 开发人员、数据科学家和机器学习工程师创建 Web 应用程序。

各位开发者,又有新的免费开源 Python 库,允许我们将数据和 AI 算法转化为可立即投入生产的 Web 应用程序。

这个扩展库名为Taipy,旨在支持数据科学和机器学习工程师构建全栈应用程序。

Github:https://github.com/Avaiga/taipy

该产品的所在公司由Vincent Gosselin和Albert Antoine创立,两人都是技术界的资深人士。

图片

官方网站:https://www.taipy.io/

Gosselin 担任首席执行官,他在 IBM 数据科学和高级分析部门工作了八年,并在 DecisionBrain 领导高级分析。Taipy 的执行董事 Antoine 曾任数据分析公司 Avaiga.com 的首席执行官,并在数据科学平台 Dataiku 从事业务开发工作。

数据科学家兼 Taipy 全球社区经理 Rym Michaut 说:

“他们在创建 Taipy 时想要解决的问题是数据空间中项目的失败率,这些项目大部分都是用 Python 编写的。这就是我们从 Java 转向 Python 的原因。”

Taipy 的三个组成部分


开发人员不需要任何 HTML、JavaScriptCSS的先验知识即可使用 Taipy,但需要对 Python 语言有基本的了解。


根据Taipy 常见问题解答页面描述,该工具由三个组件组成,从 Taipy 前端开始,使用简单的 Markdown 语言构建图形用户界面,以创建带有图形元素的交互式页面。


“开发人员对外观和感觉有很大的控制权,”Michaut说。“我们为所有应用程序和 UI 组件提供默认的 CSS 样式,但可以通过 Python 或 CSS 代码进行修改。我们在外观和感觉方面的主要优势是布局:我们提供简单的语法来自定义应用程序的设计,并且我们还有VS Code扩展,允许开发者在不运行 Python 代码的情况下预览页面的设计。”


她承认,虽然该库是可定制的,但“默认布局和外观可能不如其他可定制性较低的库那么令人印象深刻,”她说。为了让开发者了解使用 Taipy 构建的实际应用程序,她分享了为一家公司完成的财务预测仪表板模型。


图片使用 Taipy 制作的Web应用程序模型,由 Taipy 提供。(https://pl-dashboard.taipy.cloud/group_contributions)

在接下来的几个月中,Taipy 计划发布新的低代码产品,允许用户使用 Web 界面中的拖放 UI 组件来编辑前端,而无需进行编码。

Taipy 后端用于构建和管理数据流,包括可以调用代码的管道。常见问题解答指出,它可以调度任务、缓存重复操作以及并行化任务,“以优化性能并简化管道和场景的管理”。“Taipy 后端的主要目标是翻译标准 Python 代码并增强管道和场景性能和管理”。

第三个组件 Taipy Rest 提供了一种通过 Rest API 访问场景、管道和数据访问器的方法。

“Taipy 还专注于在全面的生产应用程序中工作:当我们使用我们所谓的回调在用户交互上运行最少的必要任务时,前端和后端在不同的线程上运行,因此用户仍然可以与应用程序交互,即使如果模型在后台运行,”Michaut 解释道。

Taipy 默认可以连接到 pickle、CSV、Excel、JSON、Mongo、SQL 和 Parquet。

当然,如果你可以使用 Python 连接到数据源,那么只需几行代码,它也可以在 Taipy 中运行,”。

此外,Taipy 还有连接到AWS和DataBricks的技术文档。

与现有数据科学、ML(machine learning 机器学习) 库集成


Taipy 可以通过集成其他库来有效地处理大型数据集和机器学习算法。由于该库主要关注前端,因此不会干扰任何可以用Python 代码编写的内容。Taipy 调用在网页内运行 ML 算法所需的不同库并直接与其交互。


例如,开发者可以从 Taipy 界面更改模型参数,使用按钮运行模型并在 Taipy 网页中输出可视化结果。


Taipy 还提供允许用户实时可视化大型数据集并与之交互的功能。其中一个功能是抽取器,它可以减少图表上对曲线影响最小的点的数量。此外,Taipy还具有并行或分布式集群运行机器学习模型的功能。


目标:易用性和可扩展性


我们拿Taipy 与其他类似框架比较。例如以下流行框架:


  • Streamlit(https://streamlit.io/)

  • Dash(https://dash.plotly.com/

  • Flask(https://flask.palletsprojects.com/en/3.0.x)


与以上框架相比较,Taipy 的目标是达到这些解决方案所没有的易用性和可扩展性的最佳点。


现在 Python 图形包场景分为两极:一方面,像 Streamlit 这样的工具易于使用,但无法扩展到生产应用程序。当面对多个页面/用户或大型数据集/计算时,它们经常会失败;另一方面,像 Dash 这样的工具具有可扩展性,但学习曲线却很陡峭。


而Taipy团队看到了市场的空白,并抓住了这个机会。各位开发者,可以试一试了~

作者:校长

评论