slot deposit pulsa slot mahjong slot gacor slot gacor slot gacor resmi slot gacor 2025 slot gacor terpercaya slot gacor 2025 slot gacor hari ini slot gacor hari ini slot gacor hari ini
王坚:和以往相比,今天是一个完全不同的人工智能
17611538698
webmaster@21cto.com

王坚:和以往相比,今天是一个完全不同的人工智能

人工智能 0 980 2024-09-11 08:31:46

编者按:这篇文章是王坚院士在9月5日开幕的2024年外滩大会上的演讲实录。在题为《AI、AI+以及AI基础设施》的演讲中,王坚院士分享了他对AI、AI+以及AI基础设施的思考。这里面有很多他个人角度新颖的洞察,值得我们花点时间仔细读几遍。

精彩观点:

今天的人工智能跟80年代初大家讲的同一个人工智能,是一个完全不同的人工智能。

当你做不出一个比ChatGPT好的这样一个东西的时候,至少有两个原因在约束你。第一个当然是你的技术,就是基础,就是模型。第二就是你对这个问题理解的深度,你能不能真正找到这个领域的问题,事实上是你约束的最大的一个前提。

一旦有一个事情要谈到基础设施的时候,我觉得这是一个技术渗透的终极的形式。大家可以理解,你看人类发展历史上任何技术的发展,什么技术会对人类产生最长远的影响,就是它变成了基础设施。

数据是基础设施的核心的组成部分。数据不只是一个模型的附属品,这个数据也不只是一个计算的附属品。只有所有这些东西变成一个完整的基础设施的时候,我们才会有那一次更加激动人心的创新。

当你看AI、AI+跟AI基础设施的时候,你就会发现这个世界不但技术在革命,机制也在革命,基础设施也在革命。没有比这三项革命在同一个时间发生再令人激动了。


以下是“智能超参数”根据演讲视频整理而来的实录,enjoy:

图片

各位来宾,非常感谢有这次机会,把过去几年甚至几十年有关的一些想法、一些教训或者一些经验在这跟大家分享一下。

图片

今天我自己找了三个关键词,就是AI、AI+、AI基础设施。

其实这三个关键词都绕不开一个词叫AI。刚才Michael也讲了,其实AI这个词可能一千个人有一千个人的理解,一千人有一千人的想法。但是今天碰巧这三个不同的方面,就是AI、AI+跟AI基础设施在今天被结合在一起了。

图片

我经常说的一句话,人工智能有很长的过去,只有非常短的历史。其实这是一个非常纠结的一件事情。事实上我觉得最困惑的就是,到今天为止,人工智能到底在说什么事情呢?还是值得探讨一下。

图片

我想用一张图,当时我看到以后,为什么让我会想起人工智能有一个很长的过去,只有很短的历史?你今天看到那个红线画的地方,就是大概在40年代末50年代初,就是图灵写了篇文章叫intelligent machines。

我自己觉得这是一个很长过去的一个开始,如果你要追溯关于机器智能的事情,可能可以追到几百年以前。在图灵这篇文章里边,他谈了一些很有意思的事情。这篇文章50年代发表的时候,是发表在心理学一个哲学的杂志上。第一次在探讨关于机器跟智能之间的关系。

图片

大家要知道在那个时候,其实计算机这个词还没有完全出来。所以那个时候大家还习惯把它叫做computing machinery。这就是为什么美国计算机学会会叫ACM,也是这个原因。

事实上那个时候没有计算机这个词,但是图灵在那篇文章也是第一次用了数字计算机(Digital Computer)这个词。所以这篇文章它的深远的意义,到今天为止看,都是非常值得重新来思考。我们很多最早的概念可能都是从这边来的。

当然大家都会讲到达特茅斯这个会,我自己 (觉得)很有意思,刚才Michael特别讲到了Cybermetics,我听完以后就很感触,如果当年那个会不在达特茅斯开,可能这十个人的想法就被winner给灭掉了。

那可能我们今天还是叫Cybermetics来称呼我们今天说的人工智能。但事实上,说不定从单词角度可能用Cybermetics可能会更好一点,但人工智能就这么流行了。

图片

那为什么在Herbert Simon(赫伯特·西蒙)这边我打了一个红的框呢?就是我自己对人工智能的理解,就是从Herbert Simon开始的。

这个人很神奇,他是个心理学家,但是去参与了这个会,得了诺贝尔经济学奖。他第一次访问中国是1972年,是以美国计算机学会的名义到中国来的。他80年代初又以美国心理学会的名义到了中国来。

那个时候我在大学读三年级,他到我们去讲了关于人工智能。所以大家可以设想一下看,一个大学三年级的学生,在中国,在80年代初有一个人告诉你,人工智能在下面十年会有一次天翻地覆的变化。

你大概可以设想一下,那时我有多么的激动。但事实上,等了十年没有什么东西发生,所以后来就该干什么就干什么去了。

但事实上,里边的很多最基础的东西在那个时候也被提到了,甚至大家今天知道的神经网络。我印象很深,当时在80年代末的时候,有一本教科书叫PDP,就《parallel distributed processing》,那里面讲的通篇都是神经网络的理论。

那时候讲的都是每一层两个节点,只有三层,大概你能做到那个程度就结束了。但今天的规模跟那个时候没法比。

所以我想说的一件事情,今天的人工智能跟80年代初大家讲的同一个人工智能,是一个完全不同的人工智能。我刚才讲,我觉得Michael刚才也讲到了这一点。

那为什么算是一个非常短的的历史?

图片

如果你看再回到刚才这张图上,现在这个红线里边就讲到了2017年,就是 Google开始提出了transformer这件事情。

图片

所以我想今天我们能够谈,今天人工智能又重新回到了大家的视野,又重新在产业上有那么大影响的话,那就是从2017年开始。所以我相信2017年以前的人工智能,跟我们今天说的人工智能,还是有非常不同的差别。这就是我说只有七年历史的这个原因。

当然这段历史就是从一篇文章开始的,这个大家都知道。但是我想强调一下的事情就是,这文章的 8 个作者现在都不在谷歌。听说有一个最近大概又回去了。Anyway也就是说,尽管它发明了很多东西,但是没有谷歌什么事。

那这里边有些今天大家被忽视掉的发明。比如说第一次有了token这个概念,听起来好像也没什么了不起。大家都知道今天一个商业服务,大家都是用token来计价的。大家可以设想一下看,如果你连最基本计价的逻辑都不清楚的话,大概是不会有一个好的产业的。更不用讲待会我这个主题里面会讲到的关于基础设施的事情。

图片

同样,大家都知道在谷歌发表这篇文章的前后,就有一家公司叫OpenAI。OpenAI的出现,站在我的角度,就是让我们重新思考一下创新的机制是什么。所以这就有了在2022年这个GPT的发布。

图片

这两件事情结合在一起,我总是觉得一件很怪的事情。所以我说了一句话就是:谷歌很行,谷歌也很不行。

这个谷歌很行是什么呢?特别是在中国,大家都会讲0到1的创新。所以大家可以设想一下看,谷歌是100%的完成了我们讲的0到1的创新是吧?甚至还要多一点。

但为什么谷歌不行呢?我觉得大家都可能知道埃里克·施密特(Eric Schmidt)前段时间在斯坦福大学有个发言,搞得沸沸扬扬的,就是说的谷歌非常不行。那确实也不行,为什么呢?他没有创造出一个东西,像OpenAI创造出的那么有价值,对社会(而言)。

所以我想,这中间事实上要让我们重新思考这个创新的机制到底是什么。它不是一个简单的从0到1创新,不是简单的你有一个好的想法。这中间的机制是远远超出今天学者甚至产业界可以来理解的。

这也是我觉得对我们一个最大的挑战。所以我用了一个谷歌很行,谷歌也很不行。

但在这个ChatGPT后面,它的光芒事实上是对大众而言的,不是对业界而言的,是被掩盖了很多事情。但大家都知道有alphafold,对吧?特别是alphafold 3出来了。

图片

但是很少人会说它其实背后还是transformer加diffusion。可能今天大家在讲这个能生成一个图片,能生成一些大家觉得视觉上可以满足大家生成的视频。大家会讲到transformer加diffusion,可是很少人理解,其实为什么谷歌那篇文章有那么fundamental。也就是说到最后大家今天听到的一些最基本的东西,到最后也离不开transformer。

图片

当然就是说从alphafold 2到alphafold 3,事实上他那个名字稍微做了一些改变?所以在alphafood3时候,他就用那个Pairformer,但大家都知道背后最基本的东西还是这个transformer。

再往下看,其实大家也知道,其实从ChatGPT到alphafold,到今天大家在媒体上也经常会看到关于天气预报的时候,这是一个三个跨度非常大的应用。但是他们到背后,我觉得有一个最基本的东西就是脱离不掉,就是transformer。

所以我想这个AI为什么只有七年历史?

大家再回过头来看,我们事实上是你愿意不愿意,我们生活在transformer这样的一个阴影下,也可能是一个以后是一个阳光灿烂的东西。所以我有时候会讲到说,当你在这样的一个背景下,再回过头来看,去年在政府工作报告当中,多次谈到了人工智能,同时提到了这个人工智能+。

所以大家设想一下看,在transformer这个逻辑下,我们要理解的人工智能+到底是什么。所以大家可能今天一谈到人工智能+的时候,就会简单的加一个行业进去。我用我自己的话来讲,其实这是没有比在人工智能+后面加一个行业把人工智能庸俗化的做法了。所以就是反复思考的人工智能+到底是什么?

图片

所以我们再来看这个GPT,或者是我们今天要说的这些事情的话,那可能是需要有一次重新的思考的。所以这个ChatGPT如果在人工智能+这个逻辑上,大家可以认真想一下看ChatGPT不是个应用,它是个应用平台。

图片

就像在上一个年代这个office一样,它不是一个应用,它是应用平台。但如果把GPT再拆一拆,刚才讲过了,它如果把它变成个基础模型的话,事实上chat就是一个应用。所以ChatGPT就是GPT加chat,这是我的理解。

但是我想多说一句的话,chat不是一个简单的应用场景。

大家都知道microsoft跟OpenAI这个合作过程当中,不只是做了ChatGPT。其实他们到比尔盖茨家里讨论了很多GPT这样东西可以用到什么场景。最后只有ChatGPT是最革命的,所以变成了产品。

他们做了一大堆也很有用,但没有革命的东西,后来都写成了书。所以有时候经常开玩笑说,这个书是很危险的,就是不是革命的东西都写成了书,可能最革命的东西做成了产品,这是我们今天真正发生的事情。

所以我想没有比OpenAI的这个公司的人对chat本身有更深的了解。

所以今天我还是要讲一句话,就是说当你做不出一个比ChatGPT好的这样一个东西的时候,至少有两个原因在约束你。第一个当然是你的技术,就是基础,就是模型。第二就是你对这个问题理解的深度,你能不能真正找到这个领域的问题,事实上是你约束的最大的一个前提。我们往往在很多时候,其实对这个问题不理解,以为有了GPT就可以解决很多的问题。

图片

当然我今天讲的重点是这个+到底是什么?这个+就让我想到了,大家都知道当时这个chat做这件事情的时候,事实上只是反映了比尔-盖茨当年的一个愿景,就是让计算机能听能说。所以我想今天因为有了ChatGPT以后,就当这台计算机变成了一个手机以后,我们今天就做到了这一点。

图片

那么这背后的真正的+的机制就是ChatGPT。当我们讲那个加的时候,不是加什么东西,而是怎么加,更加重要的是一个机制的创新。这句话听起来很抽象,再把它回过头来,大家可以看一看ChatGPT什么意思,这个家就是OpenAI这家公司。没有OpenAI这家公司,GPT和chat是不会变成这样一个影响大家的产品。

图片

那OpenAI这家公司为什么是一个机制的创新呢?

到今天为止,其实大家都知道OpenAI是一个怪物,也就是说它有nonprofit的OpenAI,也有OpenAI LP这样的东西。所以大家可以设想一下看,一个noprofit一个机构跟一个商业机构在OpenAI这么一个主体里边,被这样莫名其妙的存在在一起。所以我想就是发生的过去发生的事情都跟OpenAI,其实大家讲的OpenAI都是讲的OpenAI LP。

可是当大家知道它最早创办是一个非营利机构的话,大家可以想象它中间的机制是多么复杂的一件事情。所以我经常跟投资人讲,你用传统的方法是投不出 OpenAI这样一家公司来。

图片

当然因为这样的成功,让我们重新反思了一下。就是黄仁勋 说了一句话叫ChatGPT是人工智能的iPhone时刻。

其实这句话被很多人引用,我自己一开始听的时候也很激动。但是后来想了一想,这个就不知道在说什么,为什么呢?因为ChatGPT是什么也没有完全说清楚,人工智能是什么也没有完全说清楚,那iPhone到底是什么也没有说清楚,就是把这三个说不清楚的东西放在那里变成了一句话,这是让我困惑了很长时间。

其实大家也不要觉得说清楚iPhone是什么是一件很困难的事情。我说一个现象就知道了。大家说起这个iPhone都觉得app store是它非常重要的事情。

今天任何一个人发言都说生态多么重要,可是很少人理解。你们去看,Steve Jobs发布第一代的iPhone时候,是没有APP store。完了如果你要讲它的生态系统,当年跟Steve jobs一起发布iPhone第一代的那些公司,今天都不见了。所以他到底是什么?也是值得我们非常深思的。

图片

当然这句话,我自己觉得他其实抄袭了另外一句话。这是当年我自己听了看了非常激动的。就是当alphafold出来的时候,alphafold 2出来的时候,有人说了一句话,大家说是alphafold是生物学的imageNet时刻。我自己觉得这个是真正反映了技术发展的背后的。

图片

当然这个就回到了那篇文章,就是杰弗里·辛顿(Geoffrey Hinton)跟他的两个同学两个学生写的。

这篇文章,至少在做机器学习也好,图像识别也好,一定知道这篇文章。但你把这篇文章抽象出来,它就三个东西,就是今天构成我们人工智能,大家天天在讲的三个东西,就是:imagineNet,就是有组织的数据,完了有一个模型,那时候叫CNN,完了加GPU。这是第一次一篇文章完美地把三个东西结合在一起。

只不过是这三个东西在那个时候都谈不上是新的,imageNet也存在了很久,CNN 也不是一个新的算法,GPU那个时候在每个网吧里面都有。

但是是这篇文章,这三个学生把它结合在一起,使得GPU、模型和数据成为做这个行业的一个最基本的标准。特别是GPU,是在那篇文章之后,它才成为学术界的标准,在他这篇文章之后才成为工业界的标准。

图片

而当时他们用了两块GPU卡,是一个非常普通的GPU的卡。尽管这两张GPU的卡在当时大概已经超过了上万个CPU核的算力,但是这是在中国的每一个网吧里面都有的GPU卡。但是因为这样发生了一次非常大的变化,所以算力重不重要?算力重要。但是在创新阶段,大家都知道没有比人的创造力再重要的事情。

图片

那么到了今天发生的变化,为什么会引出要引出基础设施呢?就是因为规模。

也就是说当数据、模型、算力的规模都变成了一个巨大的变化的时候,这个时候一定要引入了新的东西,不然它没法解决了。这个也是做IT、做程序设计的,看到这句话也很激动。

图片

这是Pascal的发明人曾经写过一句话,他说一个婴儿的速度的1000倍就是一架喷气机。

也就是说在我们世界里面,任何的事情的规模增加了1000倍,它就会发生天翻地覆的变化。大家都知道在我刚才讲的三个组合的规模上,在每一个单元都超过了1000倍。正是这1000倍,使得今天我们绕不开一个最基本的东西,就是AI的基础设施。

大家知道一旦有一个事情要谈到基础设施的时候,我觉得这是一个技术渗透的终极的形式。大家可以理解,你看人类发展历史上任何技术的发展,什么技术会对人类产生最长远的影响,就是它变成了基础设施。

图片

当然是AI基础设施不是我发明的,今天大家都在谈的。所以我想为什么从AI到AI+到我们今天可以讲AI基础设施的话,是一个非常值得我们深思的。那下面我也会很快说一下,这是红杉在一次研讨会上用的一个幻灯片。把它拿过来了。拿过来的目的,只是为了看大家最下面一行,他就会叫做基础设施。

图片

大家看一看在云时代,在移动时代,在AI时代,他们觉得的基础设施就是云计算。这里很有意思,他把苹果是划到了基础设施这一类的。同样的大家可以看到在今天,他把英伟达也划到了基础设施那一类。所以这是一个非常有意思的一个分类方法。这个也不奇怪,为什么?英伟达大家都觉得他应该去做云计算。

图片

作为做云计算的,我看到这张图的时候也非常激动。这张图不是我画的,但是解释是我的解释。就是这张图大家看到这是六个在美国的做AI的独角兽,那你看它背后的基础设施的支持很有意思。

就是 OpenAI,大家都知道它得到了100亿美金的投资,它背后是microsoft,第二名的背后是AWS。大家可以看到在这些企业真正背后的排名是什么?就是全世界排名第一、第二、第三、第五、第六的云计算服务商,都是今天美国独角兽公司的背后支撑的来源。

这里大家看到很很神奇的一件事情,在这里有第一、第二、第三、第五、第六,就是没有第四,对吧?那第四就是阿里云。我想就是说,这种基础设施对将来这些事情的影响,从计算这个角度也能看得出来。但是我想从另外的角度也反映了这个产业之间的差距到底在哪里。

图片

所以从这个角度,让我想起了另外一句话,我觉得微软很不行,但是微软也很行。也就是说,它在人工智能领域没有做出transformer这样的东西。但是它因为云,因为这个基础设施,它在跟OpenAI创造出这么一个今天我们可以看到的东西出来的话。你从另外一个角度也可以看得出,好像微软不行,但是微软还是很行。

所以我想在AI、AI+跟AI基础设施这个逻辑上,所有人都是可以做自己可以创造历史的事情。

图片

我前几天看到一个创业公司,为了证明他这个创业的重要性,画了一张图。我觉得很有意思。就是我相信今天我们老是讲数据,讲计算,讲算法。但是大家设想一下,这些东西不在一个基础设施里边,事实上是没有价值的。

我把这个红框里面画出来,其实这张图很有意思地告诉大家,数据是基础设施的核心的组成部分。数据不只是一个模型的附属品,这个数据也不只是一个计算的附属品。只有所有这些东西变成一个完整的基础设施的时候,我们才会有那一次更加激动人心的创新。

如果大家看最前面它里面讲到那个事情,去做了两个区分,就讲是在传统的IT时代的云计算,以及在AI时代的云计算。尽管这两种计算有差别,但都是云计算。同样数据也做了这个区分,就是在传统意义上的数据,跟在AI这个意义上的数据,它是做了这么一个细微的区分的。今天这个我就不展开讲了。

图片

最后总结一下:就是事实上,当你看AI、AI+跟AI基础设施的时候,你就会发现这个世界不但技术在革命,机制也在革命,基础设施也在革命。没有比这三项革命在同一个时间发生再令人激动了。所以我想这些革命正在创造未来。

谢谢大家!


作者:王坚

来源:智能超参数公众号

评论